How to Upstream Your Code to Rails

Hartley McGuire

Hartley McGuire
@skipkayhil

Rails Triage Team

Senior Developer @ Shopify

How to Upstream Your Code to Rails

Why to Upstream Your Code to Rails

L Lower Maintenance Costs

- Improve Rails Knowledge

S git blame <file>

S git blame <file>

~/.gitconfig
[alias]
context = blame

S git context <file>

Code Blame

ng frozen_string_literal ...

iteral con require "yaml"
G L4 PP

require "active_ support/core_ext/hash/keys"

require "active_support/core_ext/object/blank”

require "active_support/key generator’

ils.application.messa... require "active_support/message_verifiers"
Id Rails.application.deprec... require "active_support/deprecation”
Add credentials using a gen... require "active_support/encrypted configuration”
Allow deprecated non-symb... require "active support/hash_with_indifferent_access™

Extract internal ActiveSuppo... require "active_ support/configuration_file"

[Railties] require_relative =>... require “rails/engine

require "rails/secrets’

Delay loading Zeitwerk require

‘rails/autoloaders™

main/railties/lib/rails/application.rb

https://github.com/rails/rails/blame/main/railties/lib/rails/application.rb

Code Blame

ng frozen_string_literal ...

iteral con require "yaml"
G L4 PP

require "active_ support/core_ext/hash/keys"

require "active_support/core_ext/object/blank”

require "active_support/key generator’

ils.application.messa... require "active_support/message_verifiers"
Id Rails.application.deprec... require "active_support/deprecation”
Add credentials using a gen... require "active_support/encrypted configuration”
Allow deprecated non-symb... require "active support/hash_with_indifferent_access™

Extract internal ActiveSuppo... require "active_ support/configuration_file"

[Railties] require_relative =>... require “rails/engine

require "rails/secrets’

Delay loading Zeitwerk require

‘rails/autoloaders™

main/railties/lib/rails/application.rb

https://github.com/rails/rails/blame/main/railties/lib/rails/application.rb

Code Blame

ng frozen_string_literal ...

iteral con require "yaml"
G L4 PP

require "active_ support/core_ext/hash/keys"

require "active_support/core_ext/object/blank”

require "active_support/key generator’

ils.application.messa... require "active_support/message_verifiers"
Id Rails.application.deprec... require "active_support/deprecation”
Add credentials using a gen... require "active_support/encrypted configuration”
Allow deprecated non-symb... require "active support/hash_with_indifferent_access™

Extract internal ActiveSuppo... require "active_ support/configuration_file"

[Railties] require_relative =>... require “rails/engine

require "rails/secrets’

Delay loading Zeitwerk require

‘rails/autoloaders™

main/railties/lib/rails/application.rb

https://github.com/rails/rails/blame/main/railties/lib/rails/application.rb

Code Blame

Adding frozen_string_literal pra...

applies new string literal conven... require “yaml®

require "active_support/core_ext/hash/keys"”
require "active_support/core_ext/object/blank”
require "active_support/key generator™
require "active_support/message verifier"

Add credentials using a generic ... require "active_support/encrypted_configuration”
Allow deprecated non-symbol a... require "active_support/hash_with_indifferent_access”
Extract internal ActiveSupport:C... require "active support/configuration file”

e . : n ire "rails/ AT
[Railties] require_relative => req... require "rails/engine

require "rails/secrets”

tests pass with requiring the fram...

ils:Application ...

main/railties/lib/rails/application.rb

https://github.com/rails/rails/blame/main/railties/lib/rails/application.rb

Open Source Citizenship

®w® (Collect Internet Points!

rubyonrails.org:

-'ﬂﬁ:u.s CONTRIBUTORS

Rails Contributors - All time

Showing 6389 people All time
Name Since Commits Today
#1 Rafael Mendonca Franca 06 Oct 2010 10741 o ,
This week
#2 Aaron Patterson 10 Mar 2009 6464
#3 David Heinemeier Hansson 24Nov2004 4782 This month
#4 Ryuta Kamizono 20 Nov 2013 4592 This year
#5 Jeremy Daer 24 Nov 2004 4407
Releases
#6 Xavier Noria 14 Oct 2007 3022
#7 José Valim 14 May 2008 3014
#8 Eileen M. Uchitelle 31 Mar 2014 2130
#9 Yves Senn 20 May 2011 2069
#10 Santiago Pastorino 16 Jan 2010 1984

https://contributors.rubyonrails.orqg

https://contributors.rubyonrails.org

Why to Upstream Your Code to Rails

What to Upstream to Rails

2] Documentation

-

.:rn\nlLs G U I D E s Home Guides Index < Contribute

Getting Started with Rails

This guide covers getting up and running with Ruby on Rails. il Chapters
After reading this guide, you will know: 1. Guide Assumption:
2. What is Rails?
< How to install Rails, create a new Rails application, and connect your application to 3. Creating a New Rails Project
a database. » |nstalling Rails
« The general layout of a Rails application. » Creating the Blog Application
4. Hello, Rails!

« The basic principles of MVC (Model, View, Controller) and RESTful design. a Starting/up the Web Seiver

« How to quickly generate the starting pieces of a Rails application. Say "Hello", Rails

Setting the Application Home
Page

o

Autoloading

=

1 Guide Assumptions MVC and You

This guide is designed for beginners who want to get started with creating a Rails application from
scratch. It does not assume that you have any prior experience with Rails.

s Generating a Model

Database Migrations

Using_a Model to Interact with

Rails is a web application framework running on the Ruby programming language. If you have no the Database

prior experience with Ruby, you will find a very steep learning curve diving straight into Rails. There s Showing a List of Articles
are several curated lists of online resources for learning Ruby:

~

. CRUDIt Where CRUDit Is Due

https://quides.rubyonrails.org/getting_started.html

https://guides.rubyonrails.org/getting_started.html

.:rR\nlLs G U I D E s Home Guides Index < Contribute

Ruby on Rails Guides Guidelines

This guide documents guidelines for writing Ruby on Rails Guides. This guide follows itself il Chapters
in a graceful loop, serving itself as an example.

1. Markdown

After reading this guide, you will know: 2. Prologue
3. Headings

« About the conventions to be used in Rails documentation. 4. Linking to the API

¢ Howto generate guides locally. 5. APl Documentation Guidelines
6. HTML Guides

» Generation

s Validation

~

. Kindle Guides

1 Markdown

Guides are written in GitHub Flavored Markdown. There is comprehensive documentation for
Markdown, as well as a cheatsheet.

s Generation

2 Prologue

Each guide should start with motivational text at the top (that's the little introduction in the blue area).
The prologue should tell the reader what the guide is about, and what they will learn. As an example,
see the Routing_Guide.

https://quides.rubyonrails.orqg/ruby_on_rails_quides_qgquidelines.html

https://guides.rubyonrails.org/ruby_on_rails_guides_guidelines.html

Q search (/) for a class, method, ...

> files

» Core extensions

v

AbstractController

v

ActionCable

v

ActionController

v

ActionDispatch

v

ActionMailbox

v

ActionMailer

v

ActionText

v

ActionView

v

ActiveJob

v

ActiveModel

v

ActiveRecord

v

ActiveStorage

<

ActiveSupport
» ActionableError
Arraylnquirer < Array

Autoload

BacktraceCleaner < O

Benchmarkable

v

Cache

CachingKeyGenerator = Object

v

Callbacks

v

CodeGenerator < Object
CompareWithRange

Concern

~ Coancurrancy

Ruby on Rails 7.0.4.2
Class

ActiveSupport::Duration < Object

activesupport/lib/active_support/duration.rb
activesupport/lib/active_support/duration/iso8601_parser.rb
activesupport/lib/active_support/duration/iso8601_serializer.rb

Provides accurate date and time measurements using Date#advance and Time#advance , respectively. It mainly supports the methods on
Numeric .

1.month.ago # equivalent to Time.now.advance(months: -1)

< >

Namespace

* CLASS ActiveSupport::Duration::ISO8601Parser

Methods

Bt 4 - <, ==

A after, ago

B before, build

eql?

from_now

H hash

| in_days, in_hours, in_minutes, in_months, in_seconds, in_weeks, in_years, iso8601

https://api.rubyonrails.orqg/classes/ActiveSupport/Duration.html

https://api.rubyonrails.org/classes/ActiveSupport/Duration.html

.[\Rn“-s G U I D E s Home Guides Index < Contribute

API Documentation Guidelines
This guide documents the Ruby on Rails APl documentation guidelines. m Chapters

After reading this guide, you will know: 1. RDoc
. Links

« How to write effective prose for documentation purposes. Wording

- English

¢ Style guidelines for documenting different kinds of Ruby code.

2
3
4
5. Oxford Comma
6. Example Code
7
8
9

. Booleans
1 RDoc Eile Names
The Rails APl documentation is generated with RDoc. To generate it, make sure you are in the rails - Eonts
root directory, run bundle install and execute: » Fixed-width Font

® Regular Font

27 ¢ bundle exec rake rdoc 10. Description Lists

. Copy 1

pre

. Dynamically Generated Methods

12. Method Visibility,
Resulting HTML files can be found in the ./doc/rdoc directory.

.
w

. Regarding the Rails Stack

Please consult the RDoc documentation for help with the markup, and also take into account these
additional directives.

https://quides.rubyonrails.orqg/api_documentation_quidelines.html

https://guides.rubyonrails.org/api_documentation_guidelines.html

(W

%, Bug Filxes

Fix collation for changing column to non-

% Merged

) Conversation 0

N skipkayhil

made change_collumn preserve the existing column'’s collation. However, this leads to problems when the old and new

column types have incompatible collations.

addressed this by adding a check to ensure that the new column type isn't binary. However, this did not cover every

column type impacted by this issue.

followed up by changing the collation to only be preserved if both the old and new column types are string-like, fixing

the issue for other column types like :int or :blob.
This is a manual backport of because it also touched some other code only present on main.

Co-authored-by: Andrew Hoglund

https://github.com/rails/rails/pull/46400

https://github.com/rails/rails/pull/46400

diff --git a/Gemfile b/Gemfile

index 45ae107e9..a92efe270 100644

--- a/Gemfile

+++ b/Gemfile

@@ -9,9 +9,9 @@

Bundle edge Rails instead: gem 'rails', github: 'rails/rails’
-gem "rails”, "7.0.4"

+gem "rails", github: "rails/rails"”, branch: "7-0-stable”

_, Performance Improvements

ActiveRecord: Improve find_db_config performance

$ Merged

) Conversation 4

ﬁ alexcwatt

AN

Motivation / Background

| noticed a large Rails app with many database configurations spending ~5ms on find_db_config , with about half of that time

spent on Array#<=> . We can update find db_config to avoid this expensive sort.

Detail

This PR changes find_db_config to not need sorting. Instead we do two find calls - the first time, looking at configs
for_current_env? and the second time, considering all configs.

https://github.com/rails/rails/pull/478960

https://github.com/rails/rails/pull/47890

require "bundler/inline"

gemfile(true) do
source "https://rubygems.org/"

gem "rails”
gem "benchmark-ips”
end

require "bundler/inline"

gemfile(true) do
source "https://rubygems.org/"

gem "rails”

gem "benchmark-ips”
end

https://github.com/rails/rails/blob/main/quides/bug_report_templates/benchmark.rb

https://github.com/rails/rails/blob/main/guides/bug_report_templates/benchmark.rb

module ActiveRecord
class DatabaseConfigurations
def fast_find_db_config(env)
find_db_config but FASTER!
end
end
end

Benchmark.ips do |x|
x.report("find_db_config") { find_db_config("primary") }
x.report("fast_find_db_config") { fast_find_db_config("primary") }
X.compare!

end

Comparison:
fast_find_db_config: 24673.0 i/s
find_db_config: 3621.5 i/s - 6.65x slower

€ New features!

What to Upstream to Rails

How to Upstream Your Code to Rails

class ImmutableValidator < ActiveModel: :EachValidator

end

class ImmutableValidator < ActiveModel: :EachValidator _

-def validate_each(record, attribute, _value)

end
end

class ImmutableValidator < ActiveModel: :EachValidator

def validate_each(record, attribute, _value)
#<Post ...>, :content, “Hello, world!”

end
end

class Post < ActiveRecord::Base
validates :content, immutable: true _
end

class ImmutableValidator < ActiveModel: :EachValidator

def w_each(record, attribute, _value)

if record.persisted?

end
end
end

class Post < ActiveRecord: :Base
validates :content, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator

def validate_each(record,wte, _value)

if record.persisted? && record.attribute_changed?(attribute)

end
end
end

class Post < ActiveRecord: :Base
validates :content, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute)
— record.errors.add(attribute, "is immutable")
end
end
end

class Post < ActiveRecord: :Base
validates :content, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute)
record.errors.add(attribute, "is immutable")
end
end
end

class Post < ActiveRecord: :Base
belongs_to :author
validates :author, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator
‘def attribute_name(record, attribute)

end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

class Post < ActiveRecord: :Base
belongs_to :author
validates :author, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator
def attribute_name(record, attribute)
-return attribute if record.attributes.include?(attribute.to_s)

end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

class Post < ActiveRecord: :Base
belongs_to :author
validates :author, immutable: true
end

class ImmutableValidator < ActiveModel: :EachValidator
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

— record.association(attribute.to_s).reflection.foreign_key
end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

class Post < ActiveRecord: :Base
belongs_to :author
validates :author, immutable: true
end

class ImmutableValidator < ActiveModel::EachValidator
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

record.association(attribute.to_s).reflection.foreign_key
end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

class ImmutableValidator < ActiveModel::EachValidator
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

recor!.association(attribute.to_s,.reflectio’.foreign_key

end

def validate_each(record ,Wte, _value)

if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

class ImmutableValidator < ActiveModel::EachValidator
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

record.association(attribute.to_s).reflection.foreign_key
end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

attr_readonly(*attributes) Link
Attributes listed as readonly will be used to create a new record but update operations will ignore these fields.

You can assign a new value to a readonly attribute, but it will be ignored when the record is updated.
Examples

class Post < ActiveRecord: :Base
attr_readonly :title
end

post = Post.create!(title: "Introducing Ruby on Rails!™)
post.update(title: "a different title") # change to title will be ignored

< >

Source: show | on GitHub

https://api.rubyonrails.orqg/classes/ActiveRecord/ReadonlyAttributes/ClassMethods.html#method-i-attr_readonly

https://api.rubyonrails.org/classes/ActiveRecord/ReadonlyAttributes/ClassMethods.html#method-i-attr_readonly

class ImmutableValidator < ActiveModel::EachValidator
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

record.association(attribute.to_s).reflection.foreign_key
end

def validate_each(record, attribute, _value)
if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")
end
end
end

module ActiveRecord
module Validations
class ReadonlyValidator < ActiveModel: :EachValidator

def validate_each(record, attribute, _value)

if record.persisted? && record.attribute_changed?(attribute_name(record, attribute))
record.errors.add(attribute, "is immutable")

end

end

private
def attribute_name(record, attribute)
return attribute if record.attributes.include?(attribute.to_s)

record.association(attribute.to_s).reflection.foreign_key
end
end
end
end

S git add . && git commit -m “Introduce ReadonlyValidator”

<l--
Thanks for contributing to Rails!

Please do not make *Draft* pull requests, as they still send
notifications to everyone watching the Rails repo.

Create a pull request when it is ready for review and feedback
from the Rails team :).

If your pull request affects documentation or any non-code

changes, guidelines for those changes are [available

here] (https://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to
-the-rails-documentation)

About this template

The following template aims to help contributors write a good description for their pull
requests.

We'd like you to provide a description of the changes in your pull request (i.e. bugs fixed
or features added), motivation behind the changes, and complete the checklist below before
opening a pull request.

Feel free to discard it if you need to (e.g. when you just fix a typo). -->

Motivation / Background

<l--
Describe why this Pull Request needs to be merged. What bug have you fixed? What feature
have you added? Why is it important?

If you are fixing a specific issue, include "Fixes #ISSUE" (replace with the issue number,

remove the quotes) and the issue will be linked to this PR.
-—->

This Pull Request has been created because [REPLACE ME]

Motivation / Background

<l--

have you added? Why is it important?

If you are fixing a specific issue, "Fixes #ISSUE" (replace with the issue number,

remove the quotes) and the issue will be linked to this PR.
-—->

Describe why this Pull Request needs.io be merged. What bug have you fixed? What feature
includ®

This Pull Request has been created because [REPLACE ME]

Motivation / Background

attr_readonly prevents attribute changes from being persisted to the database, however it
has a downside that this happens silently.

Motivation / Background

attr_readonly prevents attribute changes from being persisted to the database, however it
has a downside that this happens silently.

Detail

This Pull Request changes [REPLACE ME]

Motivation / Background

attr_readonly prevents attribute changes from being persisted to the database, however it
has a downside that this happens silently.

Detail

ReadonlyValidator is an alternative to attr_readonly, which uses ActiveModel::Validations
to throw a validation error when something tries to update a readonly attribute

class Reply
belongs_to :topic

validates :topic, readonly: true
end

Co-authored-by: Jeremy Cole <jeremy.cole@shopify.com>

S git commit --amend
Introduce ReadonlyValidator

attr_readonly prevents attribute changes from being persisted to the
database, however it has a downside that this happens silently.

ReadonlyValidator is an alternative to attr_readonly, which uses

ActiveModel: :Validations to throw a validation error when something
tries to update a readonly attribute

class Reply

belongs_to :topic

validates :topic, readonly: true
end

Co-authored-by: Jeremy Cole <jeremy.cole@shopify.com>

Additional information

<!-- Provide additional information such as benchmarks, reference to other repositories or
alternative solutions. -->

Additional information

Checklist

Before submitting the PR make sure the following are checked:

Additional information

Checklist
Before submitting the PR make sure the following are checked:

* [] This Pull Request is related to one change.

Additional information

Checklist
Before submitting the PR make sure the following are checked:

* [X] This Pull Request is related to one change.

Additional information

Checklist
Before submitting the PR make sure the following are checked:

* [X] This Pull Request is related to one change.
* [] Commit message has a detailed description of what changed and why.

Additional information

Checklist
Before submitting the PR make sure the following are checked:

* [X] This Pull Request is related to one change.
* [X] Commit message has a detailed description of what changed and why.

Additional information

Checklist
Before submitting the PR make sure the following are checked:
* [X] This Pull Request is related to one change.

* [X] Commit message has a detailed description of what changed and why.
* [] Tests are added or updated if you fix a bug or add a feature.

S git commit --amend

class ReadonlyValidationTest < ActiveRecord::TestCase
fixtures :topics

repair_validations(Topic)

test "readonly attributes can be set on creation” do
Topic.validates :title, readonly: true
t = Topic.new(title: "Ruby")
assert_predicate t, :valid?

end

test “"readonly attributes can be updated before persisting” do
Topic.validates :title, readonly: true
t = Topic.new(title: "Ruby")
t.update(title: "Ruby is great!")
assert_predicate t, :valid?
end

test "validates persisted attribute can not be changed" do
Topic.validates :title, readonly: true
t = Topic.create!(title: "Ruby")

error = assert_raises(ActiveRecord::RecordInvalid) do
t.update! (title: "Ruby is great!")
end

assert_equal("Validation failed: Title is readonly", error.message)
end

test "validates persisted association can not be changed" do
Reply.validates :topic, readonly: true

r = Reply.create!(title: "Yes it is!")
Topic.create!(title: "Ruby is great!", replies: [r])

error = assert_raises(ActiveRecord::RecordInvalid) do
r.update! (topic: Topic.create!(title: "Rails is great!"))
end
assert_equal("Validation failed: Topic is readonly", error.message)
end
end

Additional information

Checklist
Before submitting the PR make sure the following are checked:
* [X] This Pull Request is related to one change.

* [X] Commit message has a detailed description of what changed and why.
* [X] Tests are added or updated if you fix a bug or add a feature.

Additional information

Checklist
Before submitting the PR make sure the following are checked:

[X] This Pull Request is related to one change.

[X] Commit message has a detailed description of what changed and why.
[X] Tests are added or updated if you fix a bug or add a feature.

[] CHANGELOG files are updated for the changed libraries.

* ok * *

S git commit --amend
* Introduce ReadonlyValidator

An alternative to attr_readonly, which uses ActiveModel::Validations to
throw a validation error when something tries to update a readonly
attribute.

class Reply

belongs_to :topic

validates :topic, readonly: true
end

Hartley McGuire, *Jeremy Cole*

Additional information

Checklist
Before submitting the PR make sure the following are checked:

[X] This Pull Request is related to one change.

[X] Commit message has a detailed description of what changed and why.
[X] Tests are added or updated if you fix a bug or add a feature.

[X] CHANGELOG files are updated for the changed libraries.

* ok * *

hmcguire-shopify

Motivation / Background

attr_readonly prevents attribute changes from being persisted to the database, however it has a downside that this happens
silently.

Detail

ReadonlyValidator is an alternative to attr_readonly, which uses ActiveModel::Validations to throw a validation error when
something tries to update a readonly attribute

class Reply

belongs_to :topic

validates :topic, readonly:
end

Co-authored-by: Jeremy Cole

https://github.com/rails/rails/pull/460692

https://github.com/rails/rails/pull/46092

rafaelfranca

Validation are for user input. A read only attribute being set by user input is a developer error, so | don't think a validation can be

used to this. Although, | can see we changing attr_readonly to raise an exception when the field is assigned. Isn't that possible to

implement?

https://github.com/rails/rails/pull/460692

https://github.com/rails/rails/pull/46092

Make assigning a readonly attribute a no-op

13 Closed

) Conversation 18

ghiculescu

Fixes #415

After thinking about this a bit, | think this is a bug and the behaviour should match saving, for non-new records.

https://github.com/rails/rails/pull/42705

https://github.com/rails/rails/pull/42705

diff --git a/activerecord/lib/active_record/readonly_attributes.rb
b/activerecord/lib/active_record/readonly_attributes.rb

index c98d1528c698..0083e5fffc24 100644

--- a/activerecord/lib/active_record/readonly_attributes.rb

+++ b/activerecord/lib/active_record/readonly_attributes.rb

@@ -23,7 +23,15 @@ module ClassMethods

S I I T I e

post = Post.create!(title: "Introducing Ruby on Rails!")

post.update(title: "a different title") # change to title will be ignored

def attr_readonly(*attributes)
self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])
new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }

new_attributes.each do |attribute|
define_method("#{attribute}=") do |value|
super(value) if new_record?
end
end

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

Returns an array of all the attributes that have been specified as readonly.

diff --git a/activerecord/lib/active_record/readonly_attributes.rb
b/activerecord/lib/active_record/readonly_attributes.rb
index c98d1528c698..0083e5fffc24 100644
--- a/activerecord/lib/active_record/readonly_attributes.rb
+++ b/activerecord/lib/active_record/readonly_attributes.rb
@@ -23,7 +23,15 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored

_ def attr_readonly(*attributes)

self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

+ new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }
+

+ new_attributes.each do |attribute|

+ define_method("#{attribute}=") do |value|

+ super(value) if new_record?

+ end

+ end

+

+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

Returns an array of all the attributes that have been specified as readonly.

diff --git a/activerecord/lib/active_record/readonly_attributes.rb
b/activerecord/lib/active_record/readonly_attributes.rb
index c98d1528c698..0083e5fffc24 100644
--- a/activerecord/lib/active_record/readonly_attributes.rb
+++ b/activerecord/lib/active_record/readonly_attributes.rb
@@ -23,7 +23,15 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)
self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

+ new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }
+

+ \new_attributes.each do |attribute]

+ define_method("#{attribute}=") do |value|

+ super(value) if new_record?

+ end

+ end

+

+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

Returns an array of all the attributes that have been specified as readonly.

@@ -23,7 +26,21 @@ module ClassMethods

+ + 4+ + + + + + + + + + o+ o+ o+

post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)

self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }

if ActiveRecord.raise_on_assign_to_attr_readonly
new_attributes.each do |attribute|
define_method("#{attribute}=") do |value|
raise ReadonlyAttributeError.new(attribute) unless new_record?

super(value)
end
end

include(HasReadonlyAttributes)
end

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

@@ -23,7 +26,21 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)
- self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])
+ new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }

\ if ActiveRecord.raise_on_assign_to_attr_readonly

-+

new_attributes.each do |attribute|
define_method("#{attribute}=") do |value|
raise ReadonlyAttributeError.new(attribute) unless new_record?
super(value)
end

end

include(HasReadonlyAttributes)
end

+ + + + + + + + + 4+ o+ o+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

@@ -23,7 +26,21 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)
self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }

if ActiveRecord.raise_on_assign_to_attr_readonly
new_attributes.each do |attribute|

Nefine_method("#{attribute}=") do |value]|
raise ReadonlyAttributeError.new(attribute) unless new_record?

super(value)
end
end

include(HasReadonlyAttributes)
end

+ + + + + + + + + + + + o+ o+ o+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

@@ -23,7 +26,21 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)
self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

+ new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }
+

+ if ActiveRecord.raise_on_assign_to_attr_readonly

+ new_attributes.each do |attribute|

+ define_method("#{attribute}=") do |value|

+ raise ReadonlyAttributeError.new(attribute) unless new_record?
+

+ super(value)

+ end

+ end

+\

+ include(HasReadonlyAttributes)

+ end

+

+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

@@ -35,5 +52,15 @@ def readonly_attribute?(name) # :nodoc:
_attr_readonly.include?(name)
end
end

module HasReadonlyAttributes # :nodoc:
def write_attribute(attr_name, value)
if !'new_record? && self.class.readonly_attribute?(attr_name.to_s)
raise ReadonlyAttributeError.new(attr_name)
end

super
end

+ + + + + + + + + o+

end
end
end

@@ -35,5 +52,15 @@ def readonly_attribute?(name) # :nodoc:
_attr_readonly.include?(name)

end
end
+
+ module HasReadonlyAttributes # :nodoc:
+ def write_attribute(attr_name, value)
+ if !'new_record? && self.class.readonly_attribute?(attr_name.to_s)
+ raise ReadonlyAttributeError.new(attr_name)
+ end
+
+ super
+ end
+ end _ post.content = "New content”
end
end post[:content] = "New content"

post.assign_attributes(content: "New content")
post.update(content: "New content")
post.write_attribute(:content, "New content")

@@ -35,5 +52,15 @@ def readonly_attribute?(name) # :nodoc:
_attr_readonly.include?(name)
end
end
+

Nodule HasReadonlyAttributes # :nodoc:
def write_attribute(attr_name, value)

+
+ if !'new_record? && self.class.readonly_attribute?(attr_name.to_s)
+ raise ReadonlyAttributeError.new(attr_name)
+ end
+
+ super
+ end
+ end post.content = "New content”
end
end post[:content] = "New content"

post.assign_attributes(content: "New content")
post.update(content: "New content")
post.write_attribute(:content, "New content")

691,16 +699,132 @@ def test_comparison_with_different_objects_in_array
end

def test_readonly_attributes
assert_equal Set.new(["title
assert_equal Set.new(| "title

. "comments_count” 1), ReadonlyTitlePost.readonly_attributes
1), ReadonlyTitlePost.readonly_ attributes

post = ReadonlyTitlePost.create(title: “cannot change this”, body: “changeable”)
assert_equal "cannot change this’, post.title
assert_equal “changeable”, post.body

post = Post.find(post.id)
assert_equal “cannot change this', post.title

assert_equal “changeable”, post.body

assert_raises(ActiveRecord

eadonlyAttributeError) do

post.title = “changed via assignment
end
post.body = "changed via assignment”

assert_equal "cannot change this”, post.title
assert_equal “changed via assignment”, post.body

assert_raises(ActiveRecord: :ReadonlyAttributerror) do
post.write_attribute(:title, “changed via write_attribute”)

end

post.write_attribute(:body, "changed via write_attribute’)

assert_equal “cannot change this', post.title

assert_equal “changed via write_attribute”, post.body

assert_raises(ActiveRecord

eadonlyAttributeError) do
post.assign_attributes(body: “changed via assign_attributes

end

assert_equal “cannot change this’, post.title

assert_equal “changed via assign_attributes”, post.body

title:

hanged via assign_attributes”)

assert_raises(ActiveRecord: :ReadonlyAttributeError) do
post.update(title: “changed via update’, body: “changed via update’)

end

assert_equal "cannot change this”, post.title

assert_equal "changed via assign_attributes, post.body

assert_raises(ActiveRecord: i
post[:title]

end

post| :body] hanged via []

assert_equal "cannot change this’, post.title

assert_equal “changed via []=", post.body

eadonlyAttributeError) do
hanged via []

post.save!

post = Post. find(post.id)

assert_equal “cannot change this', post.title

assert_equal “changed via []=", post.body
end

def test_readonly_attributes_on_a_new_record
1), ReadonlyTitlePost.readonly_attributes

assert_equal Set.neu([“title

post = ReadonlyTitlePost.new(title: "can change this until you save”, body: "changeable”)
assert_equal "can change this until you save, post.title
assert_equal “changeable", post.body

post.title = “changed via assignment”

post.body = "changed via assignment

assert_equal "changed via assignment, post.title
assert_equal “changed via assignment”, post.body

post.write_attribute(:title, "changed via write_attribute”)
post.write_attribute(:body, 'changed via write_attribute’)
assert_equal “changed via write_attribute”, post.title
assert_equal "changed via write_attribute’, post.body

post.assign_attributes(body: "changed via assign_attributes”, title
assert_equal “changed via assign_attributes’, post.title
assert_equal "changed via assign_attributes”, post.body

post[:title]
post| :body]

assert_equal “changed via []=", post.title
assert_equal "changed via [post.body
post. save!

post = Post. find(post. id)

assert_equal “changed via [1=", post.title
assert_equal "changed via []=", post.body

end

def test_readonly_attributes_when_configured_to_not_raise

“changed via assign_attributes”)

assert_equal Set.new(| "title"]), NonRaisingPost.readonly_attributes

post = NonRaisingPost.create(title: "cannot change this", body: "changeable”)

assert_equal "cannot change this", post.title
assert_equal “changeable”, post.body

post = Post. find(post. 1d)
assert_equal "cannot change this’, post.title
assert_equal “changeable’, post.body

post.title = “changed via assignment’
post.body = "changed via assignment”
post .save!

post . reload
assert_equal "cannot change this", post.title
assert_equal "changed via assignment”, post.body

post.write_attribute(:title, “changed via write_attribute”)
post.write_attribute(:body, "changed via write_attribute’)
post.save!

post. reload

assert_equal "cannot change this", post.title

assert_equal "changed via write_attribute”, post.body

post.assign_attributes(body:
post.save!

post. reload

assert_equal "cannot change this", post.title
assert_equal "changed via assign_attributes”, post.body

changed via assign_attributes”, title

post.update(title: “changed via update’, body: “changed via update)
post. reload

assert_equal "cannot change thi:
assert_equal “changed via updat

post.title
post.body

post.update(title: "try to change”, body: "changed")
post|:title] = "changed via []=
post[:body]
post. save!
post. reload

changed via [

assert_equal “cannot change this", post.title
assert_equal “changed”, post.body
assert_equal "changed via []=", post.body

end

def test_unicode_column_name

“changed via assign_attributes”)

Raise on assignment to readonly attributes

" ruby
class Post < ActiveRecord: :Base
attr_readonly :content
end
Post.create! (content: "cannot be updated")
post.content # "cannot be updated”
post.content = "something else" # => ActiveRecord::ReadonlyAttributeError

Previously, assignment would succeed but silently not write to the database.

This behavior can be controlled by configuration:

“ruby

config.active_record.raise_on_assign_to_attr_readonly = true

and will be enabled by default with "load_defaults 7.1°

Alex Ghiculescu, *Hartley McGuire*

S git add . && git commit
Raise on assignment to readonly attributes

Previously, assignment would succeed but silently not write to the
database.

The changes to counter_cache are necessary because incrementing the
counter cache for a column calls []=. I investigated an approach to use
_write_attribute instead, however counter caches are expected to resolve
attribute aliases so write_attribute/[]= seems more correct.

Similarly, []= was replaced with _write_attribute in merge_target_lists
to skip the overriden []= and the primary key check. attribute_names
will already return custom primary keys so the primary_key check in
write_attribute is not needed.

Co-authored-by: Alex Ghiculescu <alex@tanda.co>

Additional information

<!-- Provide additional information such as benchmarks, reference to other repositories or
alternative solutions. -->

Additional information

Based on #427065
Closes #46092

https://github.com/rails/rails/pull/42705
https://github.com/rails/rails/pull/46092

Additional information

Based on #427065
Closes #46092

Checklist

Before submitting the PR make sure the following are checked:

[] This Pull Request is related to one change.

[] Commit message has a detailed description of what changed and why.
|

] Tests are added or updated if you fix a bug or add a feature.
] CHANGELOG files are updated for the changed libraries.

* ok * *

https://github.com/rails/rails/pull/42705
https://github.com/rails/rails/pull/46092

Additional information

Based on #427065
Closes #46092

Checklist

Before submitting the PR make sure the following are checked:

[X] This Pull Request is related to one change.

[X] Commit message has a detailed description of what changed and why.

[X] Tests are added or updated if you fix a bug or add a feature.
[X] CHANGELOG files are updated for the changed libraries.

* ok * *

https://github.com/rails/rails/pull/42705
https://github.com/rails/rails/pull/46092

hmcguire-shopify

Motivation / Background

Previously, assignment would succeed but silently not write to the database.

Detail

The changes to counter_cache are necessary because incrementing the counter cache for a column calls []=. | investigated an
approach to use write_attribute instead, however counter caches are expected to resolve attribute aliases so write_attribute/[]=
seems more correct.

Similarly, []= was replaced with _write_attribute in merge_target _lists to skip the overriden []= and the primary key check.
attribute_names will already return custom primary keys so the primary_key check in write_attribute is not needed.

Co-authored-by: Alex Ghiculescu alex@tand

Additional information

Based on #4270F
Closes #4609

ithub.com/rails/rails/pull/46105

https://github.com/rails/rails/pull/46105

Rails Discord server is now open
to the public

Posted by rafaelfranca

In the past few weeks, the Rails team has been working on a few changes to lower the
barrier for new contributors to the framework.

We started by disabling the automatic closing of stale PRs. While initially this
automation helped the project keep the issues tracker under control, nowadays things
are better and we prefer to go back to full human interaction.

To make it easier for contributors to recognize all the members of the Rails team, we
made public the list of current members of the Issues team. The Issues team assists
with issues triage, pull request reviews and documentation improvements, so they are
often the first interaction users have with the Rails team.

Today, we are opening a Discord server to allow contributors to help each other and
lower the overhead of communicating with new contributors.

https://rubyonrails.orq/2022/6/13/rails-discord-server-is-now-open-to-the-public

https://rubyonrails.org/2022/6/13/rails-discord-server-is-now-open-to-the-public

Raise on assignment to readonly attributes

% Merged

) Conversation 2

[&

-

hmcguire-shopify

Motivation / Background

Previously, assignment would succeed but silently not write to the database.

Detail

The changes to counter_cache are necessary because incrementing the counter cache for a column calls []=. | investigated an

approach to use _write_attribute instead, however counter caches are expected to resolve attribute aliases so write_attribute/[

seems more correct.

Similarly, []= was replaced with _write_attribute in merge_target lists to skip the overriden [J= and the primary key check.
attribute_names will already return custom primary keys so the primary_key check in write_attribute is not needed.

Co-authored-by: Alex Ghiculescu

Additional information

Based on
Closes #4

https://github.com/rails/rails/pull/46105

https://github.com/rails/rails/pull/46105

NoMethodError: super: no superclass method "content=' for #<PostSubclass
Did you mean? content
content?

>

@@ -23,7 +26,21 @@ module ClassMethods
post = Post.create!(title: "Introducing Ruby on Rails!")
post.update(title: "a different title") # change to title will be ignored
def attr_readonly(*attributes)
self._attr_readonly = Set.new(attributes.map(&:to_s)) + (_attr_readonly || [])

new_attributes = attributes.map(&:to_s).reject { |a| _attr_readonly.include?(a) }
if ActiveRecord.raise_on_assign_to_attr_readonly
new_attributes.each do |attribute|
define_method("#{attribute}=") do |value|
raise ReadonlyAttributeError.new(attribute) unless new_record?
super(value)
end

end

include(HasReadonlyAttributes)
end

+ + + + + + + + + + + + o+ o+ o+

self._attr_readonly = Set.new(new_attributes) + _attr_readonly
end

diff --git a/activerecord/lib/active_record/readonly_attributes.rb b/activerecord/lib/active_record/readonly_attributes.rb
index d38d2fe0023bf..310d105a765ab 100644
--- a/activerecord/lib/active_record/readonly_attributes.rb
+++ b/activerecord/lib/active_record/readonly_attributes.rb
@@ -46,14 +46,20 @@ def readonly_attribute?(name) # :nodoc:
end

module HasReadonlyAttributes # :nodoc:
def write_attribute(attr_name, value)
if !'new_record? && self.class.readonly_attribute?(attr_name.to_s)
raise ReadonlyAttributeError.new(attr_name)
end

super
end

+ def _write_attribute(attr_name, value)

+ if !'new_record? && self.class.readonly_attribute?(attr_name.to_s)
+ raise ReadonlyAttributeError.new(attr_name)

+ end

+

+ super

+ end

end
end

class ReadonlyTitlePostSubclass < ReadonlyTitlePost
end

def test_classes_with_attr_readonly_can_be_subclassed
post = ReadonlyTitlePostSubclass.create!

assert_raises(ReadonlyAttributeError) do
post.title = "Set via Create"
end
end

class ReadonlyTitleAbstractPost < ActiveRecord: :Base
self.abstract_class = true

attr_readonly :title
end

class ReadonlyTitlePostWithAbstractParent < ReadonlyTitleAbstractPost
self.table_name = "posts"
end

def test_readonly_attributes_in_abstract_class_descendant
assert_equal ["title"], ReadonlyTitlePostWithAbstractParent.readonly_attributes
assert_nothing_raised do
ReadonlyTitlePostWithAbstractParent.new(title: "can change this until you save")
end
end

class ReadonlyTitleAbstractPost < ActiveRecord: :Base
self.abstract_class = true

attr_readonly :title
end

class ReadonlyTitlePostWithAbstractParent < ReadonlyTitleAbstractPost
self.table_name = "posts"
end

def test_readonly_attributes_in_abstract_class_descendant
assert_equal ["title"], ReadonlyTitlePostWithAbstractParent.readonly_attributes
assert_nothing_raised do
ReadonlyTitlePostWithAbstractParent.new(title: "can change this until you save")
end
end

S git add . && git commit
Fix undefined attribute method with attr_readonly

The problem is where an abstract class defines a readonly attribute.
When another class subclasses that parent with
‘raise_on_assign_to_attr_readonly’, it will define the readonly method
before the abstract parent has defined its attributes. As a result, when
those methods are defined, they will not define the readonly attribute
writer, so that “super’ called from the readonly accessor will fail with
a "NoMethodError ™.

Instead of trying to make the overriden attribute method lazier by
defining it after the real attribute method has been defined, this
commit changes the method override to be one layer down on
_write_attribute. This avoids the issue of the attribute method being
undefined because the real _write_attribute will always be defined.

Co-authored-by: Adrianna Chang <adrianna.chang@shopify.com>
Co-authored-by: Chris Salzberg <chris.salzberg@shopify.com>

Additional information

Closes #46598

https://github.com/rails/rails/pull/46598

Additional information

Closes #46598

Checklist

Before submitting the PR make sure the following are checked:

This Pull Request is related to one change.

Commit message has a detailed description of what changed and why.

[]
[]
[] Tests are added or updated if you fix a bug or add a feature.
[] CHANGELOG files are updated for the changed libraries.

* ok * *

https://github.com/rails/rails/pull/46598

Additional information

Closes #46598

Checklist

Before submitting the PR make sure the following are checked:

[X] This Pull Request is related to one change.

[X] Commit message has a detailed description of what changed and why.

[X] Tests are added or updated if you fix a bug or add a feature.
[] CHANGELOG files are updated for the changed libraries.

* ok * *

https://github.com/rails/rails/pull/46598

Fix undefined attribute method with attr_readonly

¥ Merged

) Conversation 0

ﬁ hmcguire-shopify

-

Motivation / Background

The problem is where an abstract class defines a readonly attribute. When another class subclasses that parent with
raise_on_assign_to_attr_readonly , it will define the readonly method before the abstract parent has defined its attributes. As a
result, when those methods are defined, they will not define the readonly attribute writer, so that super called from the readonly

accessor will fail with a NoMethodError .

Detail

Instead of trying to make the overriden attribute method lazier by defining it after the real attribute method has been defined, this
commit changes the method override to be one layer down on _write_attribute. This avoids the issue of the attribute method
being undefined because the real _write_attribute will always be defined.

Additional information
Closes #4

Co-authored-by: Adrianna Chang a
Co-authored-by: Chris Salzberg

https://github.com/rails/rails/pull/46602

https://github.com/rails/rails/pull/46602

skipkayhil.github.io/slides/2023-railsconf.pdf
Thank you!

