Active Record 8:
Resilient By Default

Hartley McGuire - Rails World 2025

'+ Active Record '+

Hartley McGuire
@skipkayhil

e Ralls Issues Team

 Ruby & Rails Infrastructure
@Shopify

o https://skipkayhil.github.io/blog

https://skipkayhil.github.io/blog

Trilogy: :EOFError:
trilogy_query_send:
TRILOGY_CLOSED_CONNECTION

Internal Server Error

We're sorry, but something went wrong.
If you're the application owner check the logs for more information.

Active Record 8 Is the most resilient
version of Active Record, ever.

Verification

Verification

Ralls

Application

Verification

request

Ralls

Application

Verification

request

Ralls

Application

Verification

Rails

Application

Verification

Rails

Application

Verification

Rails

Application

Verification

Rails

Application

Verification

request

Ralls

Application

Verification

request

Ralls

Application -m

From 81c5242f43cb45d97b2a56409£8b39b0dba75ac3 Mon Sep 17 00:00:00 2001

From: Jeremy Kemper <jeremy@bitsweat.net>

Date: Sat, 19 Nov 2005 10:55:11 +0000

Subject: [PATCH] r318l@asus: Jjeremy | 2005-11-19 02:52:24 -0800 Mark
connections for verification. Retrieve connection verifies before returning
a connection. Verification tests whether the connection is marked then
reconnects 1f the connection is inactive. All active connections are marked
for verification after a request i1is handled. References #428.

Verification

Rails

Application

Verification

request

Ralls

Application

Verification

request

Ralls

Application -m

Verification

request

Rails e

Application m

Verification

Verification

Verification

Verification

T

Verification

Rails 7.1.0

Defer verification of database connections #445/6

roMerged™ matthewd merged 9 commits into main from defer-db-verify [on Jul 29, 2022

el
- matthewd commented on Feb 28, 2022 Member

Instead of verifying upon checkout, wait until we run a query.

If the query we need to run is safely retryable (including schema inspection, and most notably BEGIN), we don't need to
explicitly verify, and can just recover if the query fails.

By extension, we can apply the same connection-recovery logic to every retryable query we run -- so e.g. the beginning of
any top-level transaction is a safe transparent DB-reconnection point.

) (e 1

Verification

Verification

Verification

Verification

Verification

-SELECT_ PING | BEGIN |INSERT COMMITI

Verification

-SELECT_ PING | BEGIN |INSERT COMMITI

Verification

Verification
The Summary

* PING to verify-before-checkout

* Are queries retryable? %

Rails 7.1
* Are queries retryable? Sometimes...
* First query retryable — Skip PING

* Retryable query — Recovery point

Connection Pinning

Connection Pinning

Ralls

Application

Connection Pinning

Thread
Thread
Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread -W»

Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread m

Thread

Thread

Connection Pinning

request Thread
Thread
Thread

request Thread

Connection Pinning

request Thread -

Thread

Pool - NN MvsoL
Thread m

request Thread

Connection Pinning

request Thread -

Thread

Pool - NN MvsoL
Thread

request Thread

Connection Pinning

request Thread -

Thread

Pool - NN MvsoL
Thread m

request Thread

Connection Pinning

Thread -

Thread

Pool - NN MvsoL
Thread

request Thread

Connection Pinning

. PING | BEGIN J INSERT |COMMIT. BEGIN

INSERT |COMMIT.

Connection Pinning

rEGIN |INSERT COMMITrEGIN |INSERT

Rails 7.1.0

Rails 7.2.0

PoC: Add an option to disable connection checkout caching #50/93

I'iClosed) byroot wants to merge 1 commit into rails:main from byroot:ar-pool-caching-2 @

~ET

byroot commented on Jan 18, 2024 Member

Context

In part for performance and simplicity reasons, and in part because of its historical lack of threading support, Active Record
rely quite heavily on ActiveRecord: :Base.connection checking out and holding a connection inside a thread of fiber local
variable.

Concretly, every request or job lazily checkout connections when it needs to perform a database operations, and then holds
onto it until the request or job completes, at which point the Executor hook automatically check it back in the pool.

For the overwhelming majority of Rails application, which don't do enough I0s to benefit from more than a handful of
threads, it's a perfectly adequate solution, as it pretty much remove connection management as a concern.

However for applications that spent most of their time on I0s others than the database (e.g. 3rd party APIs), and would
benefit from much higher levels of concurrency, this strategy is problematic because it requires about as many database
connections as there is threads or fibers, even though most connections are idle but can't be used because they checked
out of the pool and held by another thead or fiber.

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread -W»

Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread m

Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

request Thread
Thread
Thread

request Thread

Connection Pinning

equest S Thread

Thread -W»

Thread

request Thread

Connection Pinning

request Thread
Thread
Thread

request Thread

Connection Pinning

equest S Thread

Thread m

Thread

request Thread

Connection Pinning

request Thread
Thread
Thread

request Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread -W»

Thread

Thread

Connection Pinning

request Thread
Thread
Thread

Thread

Connection Pinning

equest S Thread

Thread m

Thread

Thread

Maintain connection verification for 2 seconds after use #536/2

f> Merged

matthewd merged 3 commits into rails:main from matthewd:last-activity (b

' matthewd commented on Nov 19, 2024 . edited ~

on Nov 28, 2024

Member

This means that a database connection that fails in between two requests that are less than 5 2 seconds apart may cause
the failure-following request to die (if its first query is not retryable).

That's not a big concern in practice: per-request verification is intended to protect against the case that the database
connection failed some large time before the request arrives. A request beginning within seconds of the failure is morally
equivalent to a request that was already in flight.

Between automatically retryable select queries and BEGINSs, the first query of a request will very commonly be retryable

anyway. This change's value is in our new use of short-term leasing via with_connection , where we can otherwise end up
re-verifying for every non-retryable query.

Included in Rails 8.0.2, 7-2-stable

Maintain connection verification for 2 seconds after use #536/2

ivity [Yon Nov 28, 2024

roMerged™ matthewd merged 3 commits into rails:main from matthewd:last-act

el
- matthewd commented on Nov 19, 2024 . edited ~ Member

This means that a database connection that fails in between two requests that are less than 5 2 seconds apart may cause
the failure-following request to die (if its first query is not retryable).

That's not a big concern in practice: per-request verification is intended to protect against the case that the database
connection failed some large time before the request arrives. A request beginning within seconds of the failure is morally
equivalent to a request that was already in flight.

Between automatically retryable select queries and BEGINSs, the first query of a request will very commonly be retryable
anyway. This change's value is in our new use of short-term leasing via with_connection , where we can otherwise end up
re-verifying for every non-retryable query.

Connection Pinning
The Summary

 Connection pinned to Thread/Fiber, 1 Verification

Rails 7.2

e (Granular checkouts

Rails 8.0.2 / 7-2-stable

e Time based verification

Connection Pinning
The Summary

 Connection pinned to Thread/Fiber, 1 Verification

Rails 7.2

e (Granular checkouts

Rails 8.0.2 / 7-2-stable

e Time based verification

Query Retry-ability

“Ildempotence Is the property of certain
operations... whereby they can be applied
multiple times without changing the resulit.”

Wikipedia

SELECT *x FROM users WHERE 1d = 1;

User.find(1)

Arel: :Node: :Select
projections: [

Arel::Attributes: :Attribute
relation: Arel::Table(“users”)
name: “x”

]
source: Arel::Table(“users”)
wheres: |

Arel: :Nodes::Equality
left: Arel::Attributes::Attribute

relation: Arel::Table(“users”)
name: “i1d”
right: ActiveRecord: :QueryAttribute(1)

Arel: :Node: :Select
projections: [

Arel::Attributes: :Attribute
relation: Arel::Table(“users”)
name: “x”

]
source: Arel::Table(“users”)
wheres: |

Arel: :Nodes::Equality
left: Arel::Attributes::Attribute

relation: Arel::Table(“users”)
name: “i1d”
right: ActiveRecord: :QueryAttribute(1)

Arel: :Node: :Select h

SELECT

relation: Arel::Table(“users”) h

SELECT “users”

SELECT “users”.x

source: Arel::Table(“users”) h

SELECT “users”.*x FROM “users”

relation: Arel::Table(“users”) h

SELECT “users”.*x FROM “users” WHERE “users”

name: “id” h

SELECT “users”.x FROM “users” WHERE “users”.1d

Arel: :Nodes::Equality h

SELECT “users”.x FROM “users” WHERE “users”.1d =

right: ActiveRecord: :QueryAttribute(1) h

SELECT “users”.x FROM “users” WHERE “users”.1d =1

Retry known idempotent SELECT queries on connection-related exceptions
#51336

FeNergedl matthewd merged 1 commit into rails:main from adrianna-chang-shopify:ac-retry-idempotent-queries-2 (0] on Mar 26, 2024

’ adrianna-chang-shopify commented on Mar 15, 2024 - edited ~ Contributor
q1]| ¢

Motivation / Background

Take 2 of #51166, but rather than assuming that any SQL coming from the #select methods is safe to retry, we retry only
queries we have constructed and thus know to be idempotent.

Detail

This PR makes two types of queries retry-able by opting into our allow_retry flag:

1. SELECT queries we construct by walking the Arel tree via #to_sql_and_binds . We use a new retryable attribute on
collector classes, which defaults to true for most node types, but will be set to false for non-idempotent node types
(functions, SQL literals, update [delete /[insert statements, etc). The retryable value is returned from
#to_sql_and_binds and used by #select_all and passed down the call stack, eventually reaching the adapter's

#internal_exec_query method.

2. #find and #find_by queries with known attributes. We set allow_retry: true in #cached_find_by , and pass this
down to #find_by sql and # query by sql.

These changes ensure that queries we know are safe to retry can be retried automatically.

User.where(“modify()")

Arel: :Node: :Select
projections: [
Arel::Attributes: :Attribute
relation: Arel::Table(“users”)
name: “x”
]
source: Arel::Table(“users”)
wheres: |
Arel::Nodes::SqlLiteral(“modify()”)

]

Arel: :Node: :Select

projections: [
Arel::Attributes: :Attribute
relation: Arel::Table(“users”)
name: “x”

]

source: Arel::Table(“users”)
wheres: |
Arel::Nodes::SqlLiteral(“modify()”)

]

Arel: :Node::Select h

SELECT

relation: Arel::Table(“users”) h

SELECT “users”

Retryable

SELECT “users”.x

Retryable

source: Arel::Table(“users”) h

SELECT “users”.*x FROM “users”

NOT Retryable

Arel::Nodes::SglLiteral(“modify()”) h

SELECT “users”.x FROM “users” WHERE modify()

Query Retry-ability

. PING SELECTI BEGIN |INSERT

COMMITI SELECT I SELECT .

Query Retry-ability

ELECTI BEGIN |INSERT

Resilient By Default

Verification Timeout

Granular Checkouts Automatically Retry SELECTs

Deferred Connection Verification

8.0

7.2

7.1

Active Record 8 Is the most resilient
version of Active Record, ever.

Active Record 8.1 Is the most resilient
version of Active Record, ever.

Trilogy: :EOFError:
trilogy_query_send:
TRILOGY_CLOSED_CONNECTION

Add allow_retry to sql.active_record #54454

FoMerged™ byroot merged 1 commit into rails:main from skipkayhil:hm-instrument-allow-retry (Y on Feb 6
N skipkayhil commented on Feb 6 - edited ~ Member
Detail

This enables identifying queries which are and are not automatically retryable on connection errors. I've been running this
patch in my application to hunt down non-retryable queries that | think should be retryable, and it's been very useful for

finding/debugging.

class NonRetryableQueries < ActiveSupport::LogSubscriber
def sql(event)
return 1f event.payload[:allow _retry]

sgl = payload[:sqll

debug “FIXME: #{sql}”
end

attach_to :active record
end

SELECT column name
FROM i1nformation schema.statistics
WHERE 1ndex name = "PRIMARY"

AND table schema = database()

AND table name = users
ORDER BY seq_1n_1index

User.exi1ists?
=> SELECT 1 AS one FROM “users” LIMIT 1

User.exists?
=> SELECT [1 AS one FROM “users” LIMIT 1

A Warning: Sharp Knife A

Arel.sql(“1 AS ONE")

Arel.sql(“1 AS ONE”, retryable: true)

User.where(|
Arel.sql(“type = ‘admin’”, retryable: true)

)

Resilient By Default

Retry Observability EVEN MORE Retries

Verification Timeout

Granular Checkouts Automatically Retry SELECTs

Deferred Connection Verification

8.1

8.0

7.2

7.1

Active Record 8.1 Is the most resilient
version of Active Record, ever.

